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Induction Cooking

Everything You Need to Know

Introduction
The traditional concept of gas and the electric stoves is

still the most popular in the market. There are ongoing
debates, as to which is the best technology for cooking and
why. Nowadays Induction heating for cooking applications
is quickly gaining popularity. Induction cooking technology
not only offers the advantage of having a better efficiency
conversion compared to the standard solutions (Gas and
electric stoves), but also offers the advantages of rapid
heating, local spot heating, direct heating, high power
density, high reliability, low running cost and non-acoustic
noise. According to the U.S. Department of Energy the
efficiency of energy transfer in these systems is about 84%,
compared to 74% for a smooth-top non-induction electrical
unit, providing an approximate 10% saving in energy for the
same amount of heat transfer [1].

The principle behind an induction cooking stove is to
excite a coil of wire and induce a current into a pot made of
a material which must have high magnetic permeability and
which stands in the proximity of the aforementioned coil.
The way it works is similar to an inductor where the pan is
a very lossy core. The generated heat is due to the eddy
currents generated in the pot’s bottom layer combined with
the hysteresis losses from that magnetic material in the pan.
For nearly all models of induction cooktop, a cooking vessel
must be made of a ferromagnetic metal, or placed on an
interface disk which enables non-induction cookware to be
used on induction cooking surfaces.

In an induction cooker, a coil of copper wire is placed
underneath the cooking pot. An alternating electric current
flows through the coil, which produces an oscillating
magnetic field. This field induces an electric current in
the pot. Current flowing in the metal pot produces resistive
heating which heats the food. While the current is large, it is
produced by a low voltage.

The heart of such systems is the electronics which is
the biggest challenge in terms of the design. It is
a combination of a power stage coupled with a digital
control system and also must deal with the thermal
management issues. In Figure 1 is shown a schematic of
an induction cooker.

The heat generated, follows the Joule effect R times
the square of the inducted current. Figure 2 shows a block
diagram of an induction cooker inverter. The main blocks
are an EMI filter plus some over voltage and over current
protections, a rectifier bridge plus the bus capacitor,
the resonant inverter, the coil, all the sensor and actuators,
an auxiliary power supply, a thermal management system
and a control unit.

Figure 1. Equivalent of an Induction Cooking System

Load

N:1

VIN

Load

http://onsemi.com

APPLICATION NOTE



AND9166/D

http://onsemi.com
2

Figure 2. Block Diagram of an Inductor Cooker
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HOW INDUCTION HEATING WORKS

Induction heating is the process of heating a metal by
electromagnetic induction. The electromagnetic induction
generates Eddy currents within the metal and its resistance
leads to Joule heating (as shown in Figure 3) and also
generates losses due to the hysteresis of the magnetic
material in the pan [1]. An induction cooker consists of
a copper coil (generally), through which a high-frequency
alternating current (AC) is passed. The frequency of the AC
used is based on the maximum switching frequency of the
switch which is usually an IGBT. Higher switching

frequencies can reduce the inductance of the coil and size of
the resonant capacitor, allowing for cost savings of the unit.
Induction heating is based on electromagnetic laws.
The overall system can be approximated by an electric
transformer, where the primary is the copper coil into
the induction cooker and the secondary the bottom layer of
the pot (see Figure 4 and Figure 5). The heat generated is
due to the loading of the equivalent resistance of the losses
in the pan, which in the transformer allegory, would be a load
resistor on the secondary winding.

Figure 3. Scheme of an Induction Cooking

FERRITE

GLAS

COIL

Inducted Current

Coil
Current

Electrical
Magnetic Field



AND9166/D

http://onsemi.com
3

Figure 4. Scheme of the Equivalent Transformer for an Induction Heating System
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Figure 5. Inducted Current in the Pot Bottom Layer
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Electromagnetic Induction
Electromagnetic induction, also called induction, follows

Faraday’s law: “The induced electromotive force in any
closed circuit is equal to the negative of the time rate of
change of the magnetic flux through the circuit”. This can be
easily explained in the following form: Electromagnetic
induction occurs when a circuit with an alternating current
flowing through it generates current in another circuit by
being placed within an alternating flux field. Going back to
the point, an alternating current, which flows into
a conductor, generates a magnetic field following the same
equation:

�H � dl �� i (eq. 1)

� � ��
A

B � dA (eq. 2)

B � � � H (eq. 3)

� � �0 � �r (eq. 4)

e � N �
d�
dt

(eq. 5)

Where H [A/m] is the magnetic field intensity (see
Figure 6). d� is an infinitesimal arc length along the wire,
and the line integral is evaluated along the wire. i is the
current flowing in a certain conductor. B [Wb/m2] is the flux
density. � is the permeability and �0 is the permeability in
free space while �r is the relative permeability. Where e is
the electromotive force (EMF) in volts and � [Wb] is
the magnetic flux. The direction of the electromotive force
is given by Lenz’s law. Where dA is an element of surface
area of the moving surface A, B is the magnetic field, and
B ⋅ dA is the infinitesimal amount of magnetic flux. In more
visual terms, the magnetic flux through the wire loop is
proportional to the number of magnetic flux lines that pass
through the loop. Where N is the number of turns of wire and
�B is the magnetic flux in webers through a single loop.

When the flux changes the wire loop acquires
an electromotive force e [V], defined as the energy available
from a unit charge that has travelled once around the wire
loop. As shown in the equivalent circuit of Figure 1, e is
the voltage that would be measured by cutting the wire to
create an open circuit, and attaching a voltmeter to the leads.

Figure 6. Graphical Illustration of Ampere’s Law and Lenz’s Law
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Skin Effect
When an AC current flows in a conductor, the distribution

is not uniform within the conductor, but it has the tendency
to flow mainly on the surface of the conductor with the depth
based on its frequency. The equations dominating this effect
are as follows:

J � JS � e
d
� (eq. 6)

� �
2 � �

� � �
� (eq. 7)

Where J is the current density [A/m2], JS is the current
density at the surface of the conductor. � is called the skin
depth and d is the depth. In a conductor, according the Eq. 7,
J the AC current density decreases exponentially from its
value at the surface JS according to the depth d from the
surface (as shown in Figure 7). Where ρ is the resistivity of
the conductor, while � is angular frequency of current and
is equal to 2 times � times the frequency of the current. � is
the absolute magnetic permeability of the conductor.



AND9166/D

http://onsemi.com
5

Figure 7. Current Density as a Function of Depth and Skin Effect and Eddy Current
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Skin depth is due to the circulating eddy currents
cancelling the current flow in the center of a conductor and
reinforcing it in the skin. In the presence of an alternating
current, due to the skin effect, the equivalent resistance
increases.

Heat Transfer
The aforementioned phenomena leads to the generation of

unwanted currents into the conductor placed nearby (the so
called eddy current as shown in Figure 8). These currents
induced into the conductor generate heat. The amount of
heat generated into the conductor follows the Joule heating
law, also known as ohmic heating, which is the process by
which the passage of an electric current through a conductor
is dissipated as power and releases heat. This effect is also
known as Joule’s first law:

Q � P � R � i2 � v � i (eq. 8)
•

Where Q
•

 and P [W] represent the power converted from
electrical energy to thermal energy, I [A] is the current that
goes through the conductor (in this case the eddy current),
v [V] is the voltage drop across the element (e in this case is
the EMF) and R [	] is the equivalent resistance of the
conductor (in the case of induction heating is the resistance
of the bottom layer of the pot. Following Eq. 8 the amount
of heat released is proportional to the square of the current.
The heating technology (one of the principles of
the induction heating technology) has a coefficient of
performance of 1.0, meaning that every watt of electrical
power is converted to 1 watt of heat. By comparison, a heat
pump can have a coefficient of more than 1.0 since it also
absorbs additional heating energy from the environment,
moving this thermal energy to where it is needed.

Figure 8. Generated Eddy Current into the POT’s Bottom
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RESONANT CONVERTER FOR INDUCTION COOKING APPLICATIONS

In power electronics it is common to have conventional
PWM power converters operating in switched mode.
Conventionally the switches switch from high current to
high voltage as shown in Figure 9 in the so called hard
switching mode. The name “hard switching” refers to
the stressful switching behavior of the power electronic
devices. During the switch-on and switch-off processes,
the power device has to withstand high voltage and current

simultaneously, resulting in high power switching losses
and stress. In these circuits snubbers are usually added in
order to reduce the voltage transients on the power devices,
and the switching loss into the power devices. The switching
power losses are proportional to the switching frequency,
thus limiting the maximum switching frequency of
the power converters [6].

Figure 9. Power Losses in a Conventional SMPS Converter
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Increasing the switching frequency allows smaller and
less expensive inductors and capacitors to be used in
the converter. This gain in smaller component sizes must be
balanced by the increased switching losses of the power
switch. In order to increase the frequency and get the
advantages of operation at those frequencies, the resonant
converter has been introduced. Resonant converters [3]
incorporate resonant tanks in the converters to create
oscillatory (usually sinusoidal) voltage and/or current
waveforms so that zero voltage switching (ZVS) or zero
current switching (ZCS) conditions can be created for the
power switches. This leads to a switching power losses
reduction allowing a higher working switching frequency of
the resonant converters. The main advantage of resonant
converters is that they can work in a very high switching
frequency range with very low power losses. Several control

techniques, like zero current switching (ZCS) or zero
voltage switching (ZVS), can be used to reduce power loss
in resonant converters.

Figure 10 shows switching area for hard-switched
condition, snubber assisted commutation and soft switching
[4] [5] [6]. During the hard switching turn-on and turn-off,
the power device has to withstand high voltage and current
simultaneously, resulting in high switching losses and stress.
Dissipative passive snubbers are usually added to the power
circuits so that the dv/dt and voltage spikes on the power
devices can be reduced. The reduction of switching losses
and the continual improvement of power switches allow
the switching frequency of the resonant converters to
approach 100 kHz for IGBT switches. Consequently,
the size of magnetic and capacitive components can be
reduced and the power density of the converters increased.
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Figure 10. Switching Area
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Some of the topologies for induction heating are shown in
the following figures. Figure 11 (a) and (b) show the full
bridge [8], half-bridge [9] (b), and two single switch inverter
topologies with Zero Voltage Switching (ZVS) [10] (c) and
Zero Current Switching (ZCS) operation [11] (d). All
the modulation strategies commonly applied to control
output power are based on modifying either switching
frequency or duty cycle to achieve the desired power [12].
Each power converter topology offers different
performance features with specific requirements in terms of

costs and hardware and control complexity. Such systems
are well known in literature as well as the design criteria for
all their main parameters.

The most popular topologies for IH are the Half-Bridge
(HB) series-resonant converter and the Single switch
Quasi-Resonant (QR) or QR flyback. The Resonant
Half-Bridge is very common for the four burners cooktops,
and it is popular in the European market. While
the Quasi-Resonant or QR flyback is very common for
the single burner. and it is most popular in the Asian Market.

Figure 11. Samples of the Topologies Presented in Literature in the Last Decades
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Resonant Half-Bridge
The Resonant Half-Bridge inverter (11b) is the most

employed topology in induction cookers for multiple burner,
high-power systems due to its simplicity, its
cost-effectiveness, and the electrical requirements of its
components. These are commonly found in European
markets. The equivalent load is basically the resonant tank,
which consists of the inductive coil, the resonant capacitors
and the equivalent resistance of the pan.
Induction-coil-and-pan coupling it can be modeled as
a series connection of an inductor and a resistor, based on
the analogy of a transformer, and it is defined by the values
of Lr and Rload. These values change mainly with switching
frequency applied to the switches, pan material,
temperature, and inductor-pan coupling. The resonant
half-bridge belongs to the resonant converter family. It is
similar to a standard half-bridge, where the capacity of
the bus (the resonant capacitors) is set in accordance with
the coil for resonating at a certain frequency (the so called
resonant frequency). The power stage is composed of two
switches with antiparallel diodes, two capacitors and a coil.
The circuit can be simplified for calculations as it is in
Figure 12, where the two capacitor result in parallel in
respect to the one in the previous figure.

Figure 12. Equivalent Circuit for a Resonant
Half-Bridge for Cooking Application
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C

RL

Figure 12 shows the equivalent series resonant circuit. As
you can see the equivalent circuit for the resonant
half-bridge is equivalent to the series circuit. The impedance
of this circuit is as following:

Zseries � j�L 	 1
j�C

	 R (eq. 9)

� � 2 � � � f (eq. 10)

where Zseries (as shown in Figure 13) is the impedance of the
circuit from the generator point of view and � is the angular
frequency. The minimum of this equation is called resonant
frequency �0. At this point the reactance of the inductor is
equal and opposite to the reactance of the capacitor. Another
important factor to define for a resonant circuit is the quality
factor Q, which in terms of physics is defined as
a dimensionless parameter that describes is the ratio of the
circuit impedance to the losses in that circuit. Higher Q
indicates a lower rate of energy loss relative to the stored
energy of the resonator; the oscillations die out more slowly.

Q �
Z0

R
(eq. 11)

where Z0 is the impedance at the resonance frequency. Here
following the equation that dominates this resonance.

fres �
1

2 � � � Lr � Cr
� (eq. 12)

�res �
1

Lr � Cr
� (eq. 13)

Z0 �
Lr

Cr

� (eq. 14)

QL �
Z0

rpot
(eq. 15)


 � a tan
 Lr
Cr

rpot
� (eq. 16)

where fres is the resonant frequency. Lr is the coil inductance,
while Cr is the sum of the parallel resonant capacitances. φ is
the phase between the current and the voltage.
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Figure 14. Impedance Module and Phase of the Equivalent Half-Bridge Resonant Circuit
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For this type of circuit there are basically three modes of
operation: below the resonance, above the resonance and at
the resonance frequency. These three areas are characterized
as a capacitive load when f < fres, an inductive load when
f > fres and a pure resistive load when f = fres. It is possible
to see also in Figure 15. In the design of a resonant
half-bridge for induction heating applications that it is
important to design the overall system for working in
the inductive load area and in the range of the resonant
frequency as well. This is due to the fact that for the
capacitive load area there are three main detrimental effects
that might cause damage to the device during the turn on:
Reverse recovery of the antiparallel diode of the opposite
switch; Discharging the transistor output capacitance and
the Miller capacitance effect.

Operating Principle of the Half-Bridge
In this section the operating principle of an half-bridge for

induction heating application will be explored. Figure 16
shows the operational waveforms of an IH cooker for
the voltage for a switching frequency equal to the resonant
frequency (upper graph blue waveform), the current (upper
graph red waveform) into the resonant circuit, and the gate
signals (lower graph blue waveform gate T1 and red one T2)
for the two switches when the converter operates near to
the resonance frequency. This mode of operation delivers
the maximum power possible to the load.

At power levels below maximum, the switching
frequency increases and the waveform is no longer
sinusoidal. This is the case when the burner is not being
operated in boost mode. Figure 17 shows the operational
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waveform for both switches for a switching frequency above
the resonant frequency. Basically the normal operation can
be split in four intervals: t0−t1, t1−t2, t2−t3 and t3−t4.
Figure 18 illustrates the current in one switch.
The conduction sequence of semiconductor devices is
D1−T1−D2−T2. Let’s consider t0-t1 (Figure 17). Before t0
the current flows through T2 and when T2 is turned off D1
is forced to go in conduction, while the gate of T1 is still
switched off. This is in order to avoid cross conduction.
The time where neither the gate of T1 nor the one of T2 is in
on state is called dead time. At t0 the gate of T1 is activated,
but the current still flows through D1 as shown in Figure 17.
At t1 the current goes from negative to positive and starts to

flow into T1. The reverse recovery current of the diode flows
through the opposing IGBT without causing any further
losses into the resonant half-bridge devices. At the turn on
the losses into the devices are zero, while at turn off
the losses are quite relevant due to the cross between
the high current and the high voltage. In fact at t2 the switch
T1 is turned off while the current is still high and this leads
an overlap with the voltage causing turn off losses in
the device. In addition the Miller effect is present, leading an
increase of the transistor input gate charge and reducing
the turn off speed resulting in an increase of the losses.
The intervals t2−t3 and t3−t4 are the same as the previous
ones except T2 and D2 are now the operational devices.

Figure 16. Resonant Half-Bridge Waveforms. 
Upper Graph: Load Current (Red) and Voltage at the Central Point A (Blue). 

Lower Graph: Gate Voltage for the Higher Side IGBT (Blue) and the Lower Side IGBT (Red).
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Figure 17. Resonant Half-Bridge Waveforms for a Switching Frequency > Resonant Frequency.
Upper Graph: Load Current (Red) and Voltage at the Central Point A (Blue). 

Lower Graph: Gate Voltage for the Higher Side IGBT (Blue) and the Lower Side IGBT (Red).
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Figure 18. Resonant Half-Bridge Waveforms for the High Side IGBT T1 for 
Switching Frequency > Resonant Frequency. 

Upper Graph: IGBT1 Current (Red) and Voltage Collector Emitter IGBT1 (Blue). 
Lower Graph: Gate Voltage for the Higher Side IGBT (Blue).
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Quasi-Resonant
Quasi-Resonant (QR) converters [13] [14] [15] [16] [17]

[18] are widely used as AC power supplies like induction
heating cooktop or microwave inverter applications for
supplying the magnetron. Such converters are quiet
attractive for the domestic appliances because it requires
only one switch, usually an IGBT, and only one resonant
capacitor. QR converters might be considered as a good
compromise between cost and energy conversion efficiency.
These are very common for single burner, counter top units
in the Asian market.

One drawback of this family of converter is the limited
regulation range, which is commonly defined as the ratio
between the maximum power level (limited by
the maximum admitted voltage across the switch), and
the minimum power settable (limited by the loss of the Zero
Voltage Switching condition ZVS or Soft-Switching mode).
While it is desirable to operate in the ZVS mode, IH cookers
are normally allowed to operate at power levels at which
the resonant voltage does not quite reach zero. At power
levels lower than this, the overall power modulation is
pulse-width-modulated at a very low frequency to limit the
losses. In this low power mode of operation, the unit may
operate at the low power level for 1 second and then be off
for 1 second. This is much shorter than the thermal time
constant of the pan and its contents, and has no negative
effect of the cooking operation; however, it does help to
maximize the efficiency of the power stage and limit
the temperature rise of the IGBT switch.

For a given loading condition (i.e. a certain pot),
maximum power level, and maximum mains voltage,
the peak voltage rating for the switch and resonant capacitor
(i.e. 1,200 V), can be calculated from QR theory and can be
approximated by Eq. 17.

Figure 19. Impedance Module and Phase of the
Equivalent Half-Bridge Resonant Circuit
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Vres �
2 � E

C
� (eq. 17)

where E is the energy stored into the inductive part of
the load during the TON phase

E � 1
2

L � I2
pk

(eq. 18)

the peak current is proportional to TON, Vdc-bus

Ipk � TON �
Vdc
bus

L
(eq. 19)

the resonant voltage Vres can be expresses in terms of TON
and Vdc-bus

Vres �
TON � Vdc
bus

LC�
(eq. 20)

Usually TON is kept constant throughout the mains semi
period.

Operating Principle of the Quasi-Resonant Converter
For the operation of QR converter there are two main

phases of operation (see Figure 20): a charging phase where
the system behaves as a LR 1st order system and a resonant
phase where the system acts as LRC 2nd order system. QR
converters operate according to a two phase sequence where
during the first phase the coil (Lr) is charged keeping
the switch T1 in an on state and delivering power to the load
due to the current in the inductor. During the second phase
the energy stored in the inductor is transferred to
the resonant capacitor (Cr) and partially dissipated into
the load, which is represented to the bottom layer of the Pot.
The energy dissipated into the resistor is the actual energy
delivered to the load. To evaluate the circuit operation over
both the steady-state and switching portions, we will break
to waveform into four intervals: (0−t0), (t1−t2), (t2−t3), and
(t3−t4). From the previous interval (before the time 0)
the resonant thank was oscillating. At the 0 time on the graph
in Figure 20 the diode D1 is conducting and the gate of T1
is switched off. This continues until time t0. At t0 the current
goes from negative to positive and starts to flow through T1.
Therefore, in the QR converter the turn-on switching losses
are theoretically eliminated, the Miller effect is absent and
the reverse recovery current of the diode flows through T1
without any further losses into the resonant circuit. In the QR
the turn off losses are relevant due to the transition between
the high current and the high voltage. In fact at t1 switch T1
is turned off while the current is still high and this leads to
an overlap with the voltage causing turn off losses into
the device. Also the Miller effect leads to an increase of
the losses. After the turn off of the device the resonant thank
starts to oscillate. This resonant phase can be split in to
intervals t1−t2 voltage across the device positive and current
into the coil positive and t2−t3 voltage across the device still
positive but current into the coil negative.
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Figure 20. Quasi-Resonant Inverter Waveforms.
Upper Graph: Red-waveform is the Current into the Coil Lr, while the Purple-waveform is the

Voltage across the Power Devices (T1+D1).
Lower Graph: IGBT Fate voltage
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Control
Let’s focus a bit on the control algorithm for the two

structures. The control circuits for the two topologies vary
greatly in their fundamental mode of operation.
The Resonant half-bridge inverter is frequency controlled.
The switching frequency is fixed for a given power level and
the two control gate signals (for the High Side IGBT and
the low side) are shifted 180° with a fixed duty of 50%
(although it should be noted that there must be a dead time
between the two signals in order to avoid cross conduction).
Alternately, the Quasi-Resonant inverter is TON controlled.
The on-time (TON) is fixed for a certain power level and
the off-time (TOFF) is determined by the resonant tank (Lr
and Cr).

Following are flowcharts for the Quasi-Resonant and
resonant half-bridge topologies. In Figure 21 a flow chart of
a generic control algorithm for resonant half-bridge inverter
for induction cooking is presented. The first step of
the control algorithm is to check that the input voltage is
within the limits (minimum and maximum input voltage
range). If this condition is verified it goes to the next step and
closes the main relay. After that it waits for the zero crossing
in order to synchronize timers and acquisitions. After that
pan detection occurs. This process consists of checking
the presence of the pan. If the pan is detected the control will

move to the next step otherwise it will stop. Then
a frequency sweep will be performed. Upon starting,
a frequency will be applied and the relative power delivered
to the load will be calculated. From this point the initial
frequency will be increased and/or decreased in order to
generate a table where the switching frequencies are
associated with their corresponding power levels. Then
the user request will be processed, selecting a switching
frequency from the afore mentioned table and a comparison
between the power requested and the power delivered will
be performed within a certain time interval in order to
deliver the requested power. If the power exceeds the
request, the switching frequency will be increased,
otherwise it remains constant. In case the actual power is less
than the request the switching frequency will be decreased.
In parallel with this process all the protections will be
functional.

In Figure 22 a flow chart of a generic control algorithm for
Quasi-Resonant single switch inverter for induction
cooking is presented. The control is pretty much the same as
the one for the resonant half-bridge. One of the main
differences is the driving algorithm. In the resonant
half-bridge the driving quantity is the switching frequency
with a constant duty ratio, whereas in the Quasi-Resonant
the driving quantity is the TON [13].
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Figure 21. Flow Chart of a Generic Resonant Half-Bridge for Induction Cooking Control Algorithm
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Figure 22. Flow Chart of a Generic Quasi-Resonant for Induction Cooking Control Algorithm
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WAVEFORMS DURING NORMAL OPERATION

In this paragraph we will show actual waveforms of
the two converters during normal operation. Figure 23
shows the power and the phase of a resonant half-bridge for

induction cooking with resonant tank composed of
a resonant coil of 29.5 �H and a resonant capacitor of two
times 680 nF.

Figure 23. Vin 220 Vac − 1200 W Power and Phase for a Resonant Half-Bridge Inverter
for a Cooking Application
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Figure 24, Figure 25, Figure 26, Figure 27, Figure 28,
and Figure 29 show the normal operation waveforms of
a resonant half-bridge inverter for different switching
frequencies starting from 45 kHz (1,200 W) down to

24.7 kHz (2,450 W). The current’s shape changes with
the frequency. As the closer that the switching frequency is
to the natural resonant frequency, the more sinusoidal
the current into the coil (as was presented in Figure 15).
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Figure 24. Vin 220 Vac − 1200 W – 45 kHz Switching Frequency Operation for a Resonant Half-Bridge Inverter:
C1 Low Side IGBT Gate Voltage (10V/div) C2 Low side IGBT Collector Emitter Voltage (200 V/div) C3 High Side

IGBT Gate Voltage (10 V/div) C4 Coil-Load Current (20 A/div). Time 5 �s/div

Figure 25. Vin 220 Vac − 1500 W – 35 kHz operation for a Resonant Half-Bridge inverter: C1 Low Side IGBT
Gate Voltage (10 V/div) C2 Low side IGBT Collector Emitter Voltage (200 V/div) C3 High Side IGBT Gate

Voltage (10 V/div) C4 Coil-Load Current (20 A/div). Time 5 �s/div

Figure 26. Vin 220 Vac − 1800 W – 30 kHz Operation for a Resonant Half-Bridge Inverter: C1 Low Side IGBT
Gate Voltage (10 V/div) C2 Low side IGBT Collector Emitter Voltage (100 V/div) C3 High Side IGBT Gate

Voltage (10 V/div) C4 Coil-Load Current (20 A/div). Time 5 �s/div
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Figure 27. Vin 220 Vac − 2300 W – 27 kHz Operation for a Resonant Half-Bridge Inverter: C1 Low Side IGBT
Gate Voltage (10 V/div) C2 Low side IGBT Collector Emitter Voltage (100 V/div) C3 High Side IGBT Gate

Voltage (10 V/div) C4 Coil-Load Current (20 A/div). Time 5 �s/div

Figure 28. Vin 230 Vac − 2450 W – 24.7 kHz Operation for a Resonant Half-Bridge Inverter: C1 Low Side IGBT
Gate Voltage (10 V/div) C2 Low side IGBT Collector Emitter Voltage (100 V/div) C3 High Side IGBT Gate

Voltage (10 V/div) C4 Low Side IGBT Collector Emitter Current (20 A/div). Time 10 �s/div

Figure 29. Vin 230 Vac − 2450 W – 24.7 kHz Operation for a Resonant Half-Bridge Inverter: C1 Low Side IGBT
Gate Voltage (10 V/div) C2 Low side IGBT Collector Emitter Voltage (100 V/div) C3 High Side IGBT Gate

Voltage (10 V/div) C4 Low Side IGBT Collector Emitter Current (20 A/div). Time 5 �s/div
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Figure 30 and Figure 31 show the normal operation
waveforms of a Quasi-Resonant inverter for cooking

applications. Figure 32 shows the current in the resonant
coil.

Figure 30. Vin 220 Vac − 2100 W – 65 kHz operation for a Quasi-Resonant Inverter: C2 IGBT Collector Emitter
Voltage (200 V/div) C3 IGBT Gate Voltage (20 V/div) C4 IGBT Collector current (20 A/div). Time 1 ms/div

Figure 31. Vin 220 Vac − 2100 W – 65 kHz Operation for a Resonant Half-Bridge Inverter: C2 IGBT Collector
Emitter Voltage (200 V/div) C3 IGBT Gate Voltage (20 V/div) C4 IGBT Collector current (20 A/div). Time 2 �s/div

Figure 32. Vin 220 Vac − 2100 W – 65 kHz Operation for a Resonant Half-Bridge Inverter: C2 IGBT Collector
Emitter Voltage (200 V/div) C3 IGBT Gate Voltage (20 V/div) C4 IGBT Collector current (20 A/div). Time 10 �s/div
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CONCLUSION

Induction heating technology for cooking applications is
a very attractive technology which is becoming very popular
due to the high conversion efficiency. In this application
note a comprehensive overall description of how induction
heating for cooking systems works has been discussed.
The matters described provide not only a background of

the phenomena behind the concept of induction heating in
general, but also an overview of the currents technologies
and controls algorithms. Furthermore some practical
waveforms for the most popular topologies,
the Quasi-Resonant and the Resonant Half-Bridge are
included.
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GLOSSARY

Induction Heating IH

Alternating Current AC

Magnetic Field Intensity H

Flux Density B

Permeability �

Permeability in Free Space �0

Relative Permeability �r

Electromotive Force (EMF) e

Magnetic Flux �

Number of Turns N

Current Density J

Current Density at the Surface of the Conductor JS

Skin Depth �

Depth d

Resistivity of the Conductor ρ

Angular Frequency �

Power Converted from Electrical Energy 

to Thermal Energy Q
•

Equivalent Resistance of a Conductor R

Zero Voltage Switching ZVS

Zero Current Switching ZCS

Half-Bridge HB

Quasi-Resonant QR

Impedance of the Circuit from 
the Generator Point of View Zseries

Angular Resonant Frequency �0

Quality Factor Q

Resonant Frequency fres

Phase between the Current and the Voltage φ

Insulated Gate Bipolar Transistor IGBT

Metal-Oxide-Semiconductor MOS

Bipolar Junction Transistor BJT

Punch Through PT

Non Punch Through NPT

Filed Stop Technology FS
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