ON Semiconductor

Is Now

To learn more about onsemi™, please visit our website at www.onsemi.com

onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/ or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application,

3 Phase Inverter Automotive Power Module

FAM04V18DT1

Features

- Full Bridge Inverter for Variable Speed Motor Drive
- Temperature Sensing
- R-C Snubber Circuits for each MOSFET
- Electrically Isolated DBC Substrate for Low Rthjc
- Compact Design for Low Total Module Resistance
- Module Serialization for Full Traceability
- Lead Free, RoHS and UL94 V-0 Compliant
- Automotive Qualified
- This Device is Pb-Free and is RoHS Compliant

Applications

- 12 V Motor Control
- Brake System, Electrical Streering, Turbo Charger

Benefits

- Enable Design of Small, Efficient and Reliable System for Reduced Vehicle Fuel Consumption and CO₂ Emission
- High Current Application
- Low Thermal Resistance
- Simplified Vehicle Assembly
- High EMI Performance

Figure 1. Pin Configuration

ON Semiconductor®

www.onsemi.com

APM20CBB / 20LD, CASE MODFZ

ORDERING INFORMATION

See detailed ordering and shipping information on page 2 of this data sheet.

Table 1. ORDERING INFORMATION

Part Number	Package	Pb-Free and RoHS Compliant	Operating Temperature Range	Packing Method
FAM04V18DT1	APM20-CBB	Yes	−40C ~ 125°C	Tube

Table 2. PIN DESCRIPTION

Pin No.	Pin Name	Pin Descriptions
1	NTC+	NTC Thermistor Terminal 1
2	NTC-	NTC Thermistor Terminal 2
3	U_DN	Gate of Q4
4	U_UP	Gate of Q1
5	U_SENSE	Sense Pin for Source of Q1 and Drain of Q4
6	V_DN	Gate of Q5
7	V_UP	Gate of Q2
8	NC	Not used
9	V_SENSE	Sense Pin for Source of Q2 and Drain of Q5
10	W_DN	Gate for Q6
11	W_UP	Gate for Q3
12	NC	Not used
13	W_SENSE	Sense Pin for Source of Q3 and Drain of Q6
14	V_LINK	Sense Pin for Battery Voltage and Drain of High Side MOSFETs
15	BSENSE	B- Sense
16	B-	Battery-
17	B+	Battery+
18	W Phase	W Phase Power lead
19	V Phase	V Phase Power lead
20	U Phase	U Phase Power lead

Block Diagram

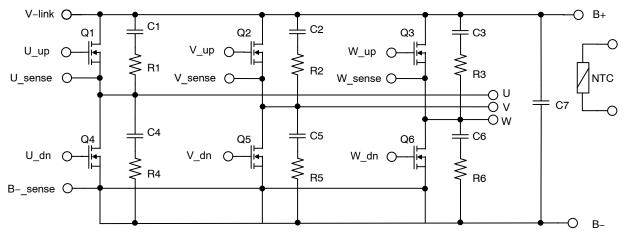


Figure 2. Schematic

Flammability Information

Solder

All materials present in the power module meet UL flammability rating class 94 V-0.

Solder used is a lead free SnAgCu alloy.

Compliance to RoHS directives

The power module is 100% lead free and RoHS compliant 2000/53/C directive.

Table 3. ABSOLUTE MAXIMUN RATINGS (T_J = 25°C, Unless Otherwise Specified)

Symbol	Parameter	Rating	Unit
V _{DS} (Q1~Q6)	V _{DS} (Q1~Q6) Drain to Source Voltage		V
V _{GS} (Q1~Q6)	Gate to Source Voltage	±20	V
E _{AS} (Q1~Q6)	Single Pulse Avalanche Energy (Note 1)	1466	mJ
TJ	Maximum Junction Temperature	175	°C
T _{STG}	Storage Temperature	−40 ~ +125	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

Table 4. ELECTRICAL SPECIFICATIONS (T_J = 25°C, Unless Otherwise Specified)

	Parameter	Conditions	Min	Тур	Max	Units
B _{VDSS}	Drain-to-Source Breakdown Voltage	$I_D = 250 \mu\text{A}, V_{GS} = 0 \text{V}$	40			V
V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_D = 250 \mu A$	2		4	V
V _{SD}	Source-to-Drain Diode Voltage	I _{SD} = 80 A, V _{GS} = 0 V			1.1	V
R _{DS(ON)} Q1	Q1 Inverter High Side MOSFETs (Note 2)	V _{GS} = 10 V, I _D = 80 A		0.60	0.85	mΩ
R _{DS(ON)} Q2	Q2 Inverter High Side MOSFETs (Note 2)	V _{GS} = 10 V,I _D = 80 A		0.53	0.75	mΩ
R _{DS(ON)} Q3	Q3 Inverter High Side MOSFETs (Note 2)	V _{GS} = 10 V, I _D = 80 A		0.45	0.65	mΩ
R _{DS(ON)} Q4	Q4 Inverter Low Side MOSFETs (Note 2)	V _{GS} = 10 V, I _D = 80 A		1.03	1.48	mΩ
R _{DS(ON)} Q5	Q5 Inverter Low Side MOSFETs (Note 2)	V _{GS} = 10 V, I _D = 80 A		0.90	1.28	mΩ
R _{DS(ON)} Q6	Q6 Inverter Low Side MOSFETs (Note 2)	V _{GS} = 10 V, I _D = 80 A		0.77	1.25	mΩ
I _{GSS}	Gate-to-Source Leakage Current	$V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}$	-100		+100	nA
I _{DSS}	Drain-to-Source Leakage Current	V _{DS} = 40 V, V _{GS} = 0 V			2	μΑ
·	sistance, Total Module RDS(ON): $tt(+) \rightarrow Phase \rightarrow GND(-)$	V _{GS} = 10 V, I _D = 80 A		2.36	3.4	mΩ
Switching	Tdon, Turn-on delay time	V _{GS} = 10 V, V _{DD} = 14 V, I _D = 30 A			500	nS
Characteristics	Tr, Rise time				400	nS
	Tdoff, Turn-off delay time				1000	nS
	Tf, Fall time				400	nS

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

Starting T_J = 25°C, L = 0.47 mH, I_{AS} = 79 A, V_{DD} = 40 V during inductor charging and V_{DD} = 0 V during time in avalanche.
 All MOSFETs (bare die) have same die size and Rdson level, The different Rdson values listed in the datasheet are due to the different access points available inside the module for Rdson measurement.

Table 5. TEMPERATURE SENSE (NTC THERMISTOR)

Parameter	Test Conditions	Min	Max	Units
Resistance	Current = 1 mA	7.5	13	kΩ

Table 6. MOSFETS RDSON MEASUREMENT PATHS

	+ Force	- Force	+ Sense	- Sense		+ Force	- Force	+ Sense	- Sense
Q1	B+	U phase	Vlink	U sense	Q4	U phase	B-	U sense	B- sense
	Pin 17	Pin 20	Pin 14	Pin 5		Pin 20	Pin 16	Pin 5	Pin 15
Q2	B+	V phase	Vlink	V sense	Q5	V phase	B-	V sense	B- sense
	Pin 17	Pin 19	Pin 14	Pin 9		Pin 19	Pin 16	Pin 9	Pin 15
Q3	B+	W phase	Vlink	W sense	Q6	W phase	B-	W sense	B- sense
	Pin 17	Pin 18	Pin 14	Pin 13		Pin 18	Pin 16	Pin 13	Pin 15

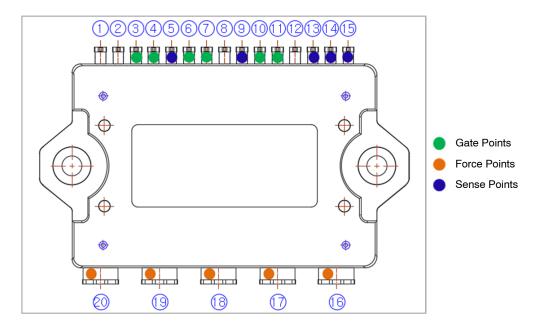


Figure 3.

Table 7. MODULE RDSON MEASUREMENT PATHS

	+ Force	- Force	+ Sense	- Sense		+ Force	- Force	+ Sense	- Sense
Q1	B+	U phase	B+	U phase	Q4	U phase	B-	U phase	B-
	Pin 17	Pin 20	Pin 17	Pin 20		Pin 20	Pin 16	Pin 20	Pin 16
Q2	B+	V phase	B+	V phase	Q5	V phase	B-	V phase	B-
	Pin 17	Pin 19	Pin 17	Pin 19		Pin 19	Pin 16	Pin 19	Pin 16
Q3	B+	W phase	B+	W phase	Q6	W phase	B-	W phase	B-
	Pin 17	Pin 18	Pin 17	Pin 18		Pin 18	Pin 16	Pin 18	Pin 16

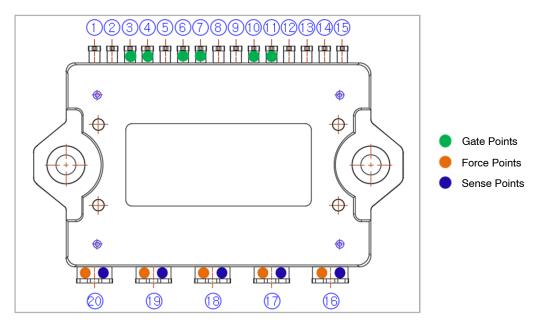


Figure 4.

Table 8. THERMAL RESISTANCE

Parameter	Min	Тур	Max	Unit	
Rthjc Thermal Resistance Junction to case, Single Inverter FET	Q1-Q6 Thermal Resistance J-C	-	0.69	0.97	C/W

Table 9. ISOLATION VOLTAGE (Isolation Voltage between DBC Bottom Surface and All Module Pins)

Test	Test Conditions	Min	Max	Unit
Leakage @ Isolation Voltage (Hi-Pot)	VAC = 3 kV Frequency = 50 Hz Test Time = 1 s	_	300	μА

Table 10. REFERENCE TYPICAL CHARACTERISTICS FOR DISCRETE MOSFET FDBL9401_F085, USED IN HIGH SIDE AND LOW SIDE MOSFETS OF THIS MODULE

Symbol	Parameter	Test	Conditions	Min	Тур	Max	Units
OFF CHAP	RACTERISTICS	_		•	•		
B _{VDSS}	Drain-to-Source Breakdown Voltage	I _D = 250 μA, V _G	_S = 0 V	40	-	-	V
I _{DSS}	Drain-to-Source Leakage Current	V _{DS} = 40 V		-	-	1	μΑ
		V _{GS} = 0 V	T _J = 175°C (Note 3)	-	_	1	mA
I _{GSS}	Gate-to-Source Leakage Current	V _{GS} = ±20 V		-	_	±100	nA
ON CHAR	ACTERISTICS			•			
V _{GS(th)}	Gate to Source Threshold Voltage	V _{GS} = V _{DS.} I _D :	= 250 μA	2.0	3.0	4.0	V
R _{DS(on)}	Drain to Source On Resistance	I _D = 80 A	T _J = 25°C	-	0.50	0.65	mΩ
		V _{GS} = 10 V	T _J = 175°C (Note 3)	-	0.86	1.10	mΩ
DYNAMIC	CHARACTERISTICS	•	•	•	•		
C _{iss}	Input Capacitance	V _{DS} = 25 V, V _{GS}	= 0 V	_	15900	-	pF
C _{oss}	Output Capacitance	f = 1 MHz		_	4025	_	pF
C _{rss}	Reverse Transfer Capacitance			_	604	_	pF
Rq	Gate Resistance	f	= 1 MHz	_	2.6	_	Ω
Q _{g(ToT)}	Total Gate Charge at 10 V	V _{GS} = 0 to 10	V _{DD} = 20 V	-	220	-	nC
Q _{g(th)}	Threshold Gate Charge	V _{GS} = 0 to 2 V	I _D = 80 A	_	29	-	nC
Q _{gs}	Gate to Source Gate Charge		•	-	73	-	nC
Q _{gd}	Gate to Drain "Miller" Charge			-	41	-	nC
SWITCHIN	G CHARACTERISTICS						
t _{on}	Turn-On Time	V _{DD} = 20 V, I _D =	80 A	_	_	221	ns
t _{d(on)}	Turn-On Delay	$V_{GS} = 10 \text{ V, } R_{GE}$	_{EN} = 6 Ω	_	54	-	ns
t _r	Rise Time			_	82	-	ns
t _{d(off)}	Turn-Off Delay			-	106	-	ns
t _f	Fall Time			_	52	-	ns
t _{off}	Turn-Off Time	1		_	-	215	ns
DRAIN-SC	DURCE DIODE CHARACTERISTICS						
V _{SD}	Source to Drain Diode Voltage	I _{SD} = 80 A, V _{GS}	= 0 V	_	_	1.25	V
		I _{SD} = 40 A, V _{GS}	= 0 V	_	-	1.2	V
t _{rr}	Reverse Recovery Time	$I_F = 80 \text{ A}, \text{ dI}_{SD}/\text{d}$	t = 100 A/μs	_	119	133	ns
Q _{rr}	Reverse Recovery Charge	V _{DD} = 32 V		-	228	274	nC

^{3.} The maximum value is specified by design at $T_J = 175^{\circ}C$. Product is not tested to this condition in production.

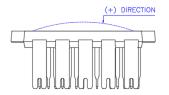
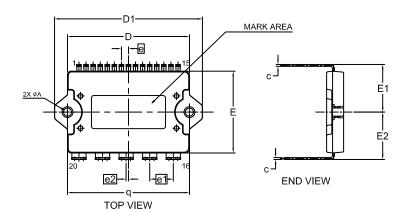
Table 11. COMPONENTS

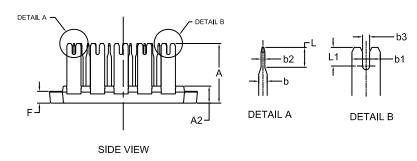
		Cor	mponent		Size	Maker	Remarks
1	MOSFET	PT8 40 V	PT8 40 V, bare die used in FDBL9401	6ea	260 x 145 mil	ON Semiconductor	AEC Q101 qualified by FDBL9401_F085
2	R1, 2, 3, 4, 5, 6	Resistors	1406 10 Ω 200 mV 1%	6ea	2200 x 1100 [μm]	Vishay	AEC Q200 qualified
3	C1, 2, 3, 4, 5, 6	Capacitors	8200 pF 50 V 5%	6ea	2000 x 1250 [μm]	Murata	AEC Q200 qualified
4	C7	Capacitor	1206 100 nF 100 V 10%	1ea	2010 x 1250 [μm]	Murata	AEC Q200 qualified
5	NTC Thermistor NCP18XH103F0SRB – 10 kΩ			1ea	1600 x 800 [μm]	Murata	AEC Q200 qualified

Mechanical Characteristics and Ratings

WARPAGE SPEC. 5.95 2.00 1 2 0 8 8 8 8

Warpage Spec. of point 1, 2, 3, 4 : $0\sim200$ um


Figure 5.

PACKAGE DIMENSIONS

APM20CBB / 20LD, PDD STD, R-EPS MODULE CASE MODFZ

CASE MODFZ

NOTES:

- DIMENSIONING AND TOLERANCING PER. ASME Y14.5M, 2009.
- 2. CONTROLLING DIMENSION: MILLIMETERS
- DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH AND TIE BAR EXTRUSIONS.
- DIMENSION b and c APPLY TO THE PLATED LEADS AND ARE MEASURED BETWEEN 1.00 AND 2.00MM FROM THE LEAD TIP.

	MILLIMETERS					
DIM	MIN.	NOM.	MAX.			
Α	25.00	25.30	25.60			
A2	7.00	7.20	7.40			
b	1.70	1.80	1.90			
b1	5.80	6.00	6.20			
b2	0.70	0.80	0.90			
b3	1.40	1.50	1.60			
С	0.75	0.80	0.90			
D	51.50	51.70	51.90			
D1	62.40	62.70	63.00			
Е	34.50	34.70	34.90			
E1	20.00	20.20	20.40			
E2	19.90	20.10	20.30			
Ф		3.00 BSC				
e1		10.00 BSC				
e2		1.00 BSC				
F	4.80	5.00	5.20			
L	4.00	4.20	4.40			
L1	3.75	3.95	4.15			
q	51.50	51.70	51.90			
ΦA	3.30	3.40	3.50			

ON Semiconductor and ware trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify a

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com

ON Semiconductor Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative