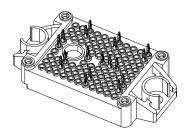
Silicon Carbide (SiC) Module – EliteSiC, 10 mohm SiC M1 MOSFET, 1200 V, 2-PACK Half Bridge Topology, F1 Package

NXH010P120MNF1PTNG, NXH010P120MNF1PNG, NXH010P120MNF1PTG, NXH010P120MNF1PG

General Description

The NXH010P120MNF1 is a power module containing an $10~\text{m}\Omega/1200~\text{V}$ SiC MOSFET half bridge and a thermistor in an F1 package.

Features


- 10 mΩ/1200 V SiC MOSFET Half Bridge
- Thermistor
- Options With Pre-Applied Thermal Interface Material (TIM) and Without Pre-Applied TIM
- Press-Fit Pins

Typical Applications

- Solar Inverter
- Uninterruptible Power Supplies
- Electric Vehicle Charging Stations
- Industrial Power

Figure 1. NXH010P120MNF1 Schematic Diagram

PIM18 33.8x42.5 (PRESS FIT) CASE 180BW

MARKING DIAGRAM

NXH010P120MNF1z = Specific Device Code
z = PTNG/PNG/PTG/PG
AT = Assembly & Test Site Code
YYWW = Year and Work Week Code

ORDERING INFORMATION

See detailed ordering and shipping information on page 4 of this data sheet.

$\begin{array}{c} NXH010P120MNF1PTNG,\ NXH010P120MNF1PNG,\ NXH010P120MNF1PTG,\\ NXH010P120MNF1PG \end{array}$

PIN CONNECTIONS

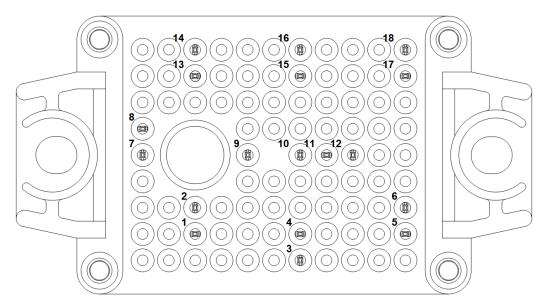


Figure 2. Pin Connections

PIN FUNCTION DESCRIPTION

Pin	Name	Description
8	TH1	Thermistor Connection 1
7	TH2	Thermistor Connection 2
1	DC+	DC Positive Bus connection
2	DC+	DC Positive Bus connection
13	PHASE	Center point of half bridge
14	PHASE	Center point of half bridge
9	DC-	DC Negative Bus connection
3	S1	Q1 Kelvin Emitter (High side switch)
4	G1	Q1 Gate (High side switch)
10	DC-	DC Negative Bus connection
15	G2	Q2 Gate (Low side switch)
16	S2	Q2 Kelvin Emitter (High side switch)
11	DC-	DC Negative Bus connection
12	DC-	DC Negative Bus connection
5	DC+	DC Positive Bus connection
6	DC+	DC Positive Bus connection
17	PHASE	Center point of half bridge
18	PHASE	Center point of half bridge

Table 1. ABSOLUTE MAXIMUM RATINGS (Note 1)

Rating	Symbol	Value	Unit
SIC MOSFET			•
Drain-Source Voltage	V _{DSS}	1200	V
Gate-Source Voltage	V _{GS}	+25/–15	V
Continuous Drain Current @ T _c = 80°C (T _J = 175°C)	I _D	114	А
Pulsed Drain Current (T _J = 175°C)	I _{Dpulse}	228	А
Maximum Power Dissipation @ T _C = 80°C (T _J = 175°C)	P _{tot}	413	W
Minimum Operating Junction Temperature	T _{JMIN}	-40	°C
Maximum Operating Junction Temperature	T _{JMAX}	175	°C
THERMAL PROPERTIES			
Storage Temperature range	T _{stg}	-40 to 150	°C
INSULATION PROPERTIES			
Isolation Test Voltage, t = 1 sec, 60 Hz	V _{is}	4800	V_{RMS}
Creepage Distance		12.7	mm

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Refer to ELECTRICAL CHARACTERISTICS, RECOMMENDED OPERATING RANGES and/or APPLICATION INFORMATION for Safe

RECOMMENDED OPERATING RANGES

Rating	Symbol	Min	Max	Unit
Module Operating Junction Temperature	T_J	-40	150	°C

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

ELECTRICAL CHARACTERISTICS

 $T_J = 25^{\circ}C$ unless otherwise noted

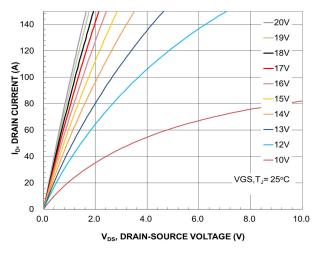
Parameter	Test Conditions	Symbol	Min	Тур	Max	Unit
SIC MOSFET CHARACTERISTICS						
Drain-Source Breakdown Voltage	$V_{GS} = 0 \text{ V}, I_D = 400 \mu\text{A}$	V _{(BR)DSS}	1200	-	-	V
Zero Gate Voltage Drain Current	V _{GS} = 0 V, V _{DS} = 1200 V	I _{DSS}	-	-	200	μΑ
Drain-Source On Resistance	V _{GS} = 20 V, I _D = 100 A, T _J = 25°C	R _{DS(ON)}	-	10.5	14	mΩ
	V _{GS} = 20 V, I _D = 100 A, T _J = 125°C		-	14.1	_	
	V _{GS} = 20 V, I _D = 100 A, T _J = 150°C			14.5	_	1
Gate-Source Threshold Voltage	Gate-Source Threshold Voltage V _{GS} = V _{DS} , I _D =40 mA		1.8	2.90	4.3	V
Gate Leakage Current	$V_{GS} = -10/20 \text{ V}, V_{DS} = 0 \text{ V}$	I _{GSS}	-500	-	500	nA
Internal Gate Resistance		R _G	-	0.8	-	Ω
Input Capacitance	$V_{DS} = 800 \text{ V}, V_{GS} = 0 \text{ V}.$	C _{ISS}	-	4707	-	pF
Reverse Transfer Capacitance	f = 1 MHz	C _{RSS}	-	39	=	1
Output Capacitance		C _{OSS}	-	548	-	1
C _{OSS} Stored Energy	V _{DS} = 0 V to 800 V, V _{GS} = 0 V	Eoss	-	221	-	μJ
Total Gate Charge	V _{DS} = 800 V. V _{GS} = 20 V.	Q _{G(TOTAL)}	_	454	_	nC
Gate-Source Charge	I _D = 100 A	Q _{GS}	_	129	_	nC
Gate-Drain Charge	ate-Drain Charge		_	131	_	nC

Operating parameters.

$\begin{array}{c} NXH010P120MNF1PTNG,\ NXH010P120MNF1PNG,\ NXH010P120MNF1PTG,\\ NXH010P120MNF1PG \end{array}$

ELECTRICAL CHARACTERISTICS (continued)

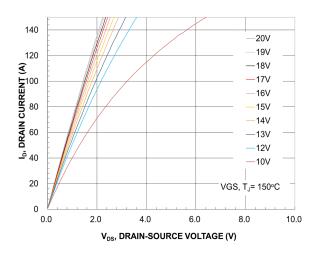
 $T_J = 25^{\circ}C$ unless otherwise noted


Parameter	Parameter Test Conditions		Min	Тур	Max	Unit
SIC MOSFET CHARACTERISTICS						
Turn-on Delay Time	T _J = 25°C	t _{d(on)}	-	36	-	ns
Rise Time	$V_{DS} = 600 \text{ V}, I_D = 100 \text{ A}$ $V_{GS} = -5 \text{ V}/18 \text{ V}, R_G = 2 \Omega$	t _r	_	16.2	_	
Turn-off Delay Time	VGS = -5 V/10 V, TIG = 2 S2	t _{d(off)}	_	135.2	_	
Fall Time	1 i	t _f	_	13	_	
Turn-on Switching Loss per Pulse	1 i	E _{ON}	_	1.47	_	mJ
Turn off Switching Loss per Pulse	1 i	E _{OFF}	_	0.33	_	
Turn-on Delay Time	T _J = 150°C	t _{d(on)}	_	30.5	-	ns
Rise Time	$V_{DS} = 600 \text{ V}, I_D = 100 \text{ A}$ $V_{GS} = -5 \text{ V}/18 \text{ V}, R_G = 2 \Omega$	t _r	_	15.2	_	1
Turn-off Delay Time	VGS = -3 V/10 V, TIG = 2 32	t _{d(off)}	_	149	_	1
Fall Time]	t _f	-	15	-	
Turn-on Switching Loss per Pulse]	E _{ON}	-	1.77	-	mJ
Turn off Switching Loss per Pulse]	E _{OFF}	-	0.41	-	
Diode Forward Voltage	I _D = 100 A, T _J = 25°C	V _{SD}	=	3.94	6	V
	I _D = 100 A, T _J = 150°C		=	3.42	=	
Thermal Resistance - Chip-to-case	M1, M2	R_{thJC}	=	0.23	=	°C/W
Thermal Resistance – Chip-to-heatsink	Thermal Resistance - chip-to- heatsink, Thermal grease, Thick- ness = 2 Mil _2%, A = 2.8 W/mK	R _{thJH}	-	0.38	-	°C/W
THERMISTOR CHARACTERISTICS				·-		-
Nominal Resistance	T _{NTC} = 25°C	R ₂₅	=	5	-	kΩ
Nominal Resistance	T _{NTC} = 100°C	R ₁₀₀	-	493	-	Ω
Nominal Resistance	T _{NTC} = 150°C	R ₁₅₀	-	159.5	-	Ω
Deviation of R ₁₀₀	T _{NTC} = 100°C	ΔR/R	-5	_	5	%
Power Dissipation – recommended limit	0.15 mA, non-self-heating effect	P _D	_	0.1	_	mW
Power Dissipation – absolute maximum	5 mA	P _D	_	34.2	_	mW
Power Dissipation Constant			-	1.4	_	mW/K
B-value	B-value B(25/50), tolerance ±2%		=	3375	=	K
B-value B(25/100), tolerance ±2%			_	3436	_	К

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

ORDERING INFORMATION

Orderable Part Number	Specific Device Marking	Package Type	Shipping [†]
NXH010P120MNF1PNG	NXH010P120MNF1PNG	F1-2PACK: Case 180BW Press-fit Pins, Ni-Plated DBC (Pb-Free and Halide-Free)	28 Units / Blister Tray
NXH010P120MNF1PTNG	NXH010P120MNF1PTNG	F1-2PACK: Case 180BW Press-fit Pins, Ni-Plated DBC with pre-applied thermal interface material (TIM) (Pb-Free and Halide-Free)	28 Units / Blister Tray
NXH010P120MNF1PG	NXH010P120MNF1PG	F1-2PACK: Case 180BW Press-fit Pins, Copper DBC (Pb-Free and Halide-Free)	28 Units / Blister Tray
NXH010P120MNF1PTG	NXH010P120MNF1PTG	F1-2PACK: Case 180BW Press-fit Pins, Copper DBC with pre-applied thermal interface material (TIM) (Pb-Free and Halide-Free)	28 Units / Blister Tray


[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

140 —20V 19V 120 18V ID, DRAIN CURRENT (A) 17V 100 -16V 15V 80 _14\/ 13V 60 -12V —10V 40 VGS, T_.= 125°C 20 0.0 2.0 8.0 10.0 V_{DS}, DRAIN-SOURCE VOLTAGE (V)

Figure 3. MOSFET Typical Output Characteristics

Figure 4. MOSFET Typical Output Characteristics

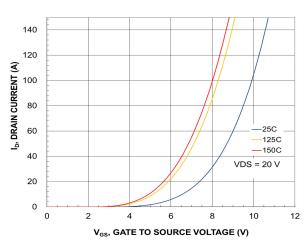
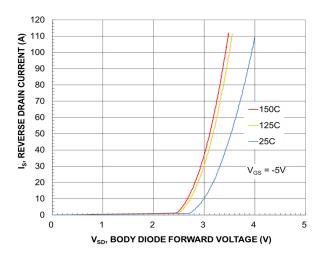



Figure 5. MOSFET Typical Output Characteristics

Figure 6. MOSFET Typical Transfer Characteristics

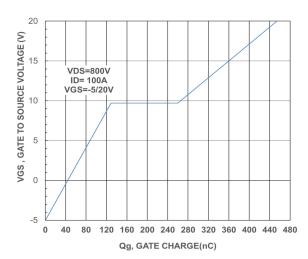


Figure 7. Body Diode Forward Characteristic

Figure 8. Gate-to-Source Voltage vs. Total Charge

TYPICAL CHARACTERISTICS

SIC MOSFET (M1, M2)

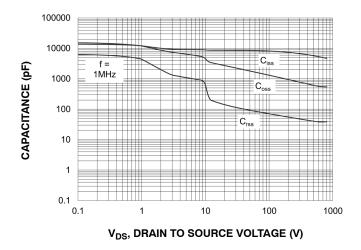


Figure 9. Capacitance vs. Drain-to-Source Voltage

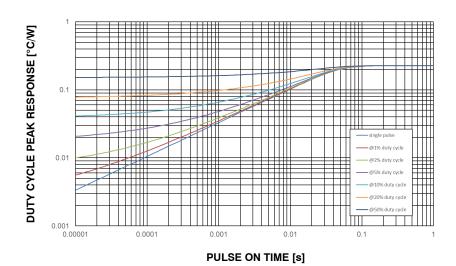
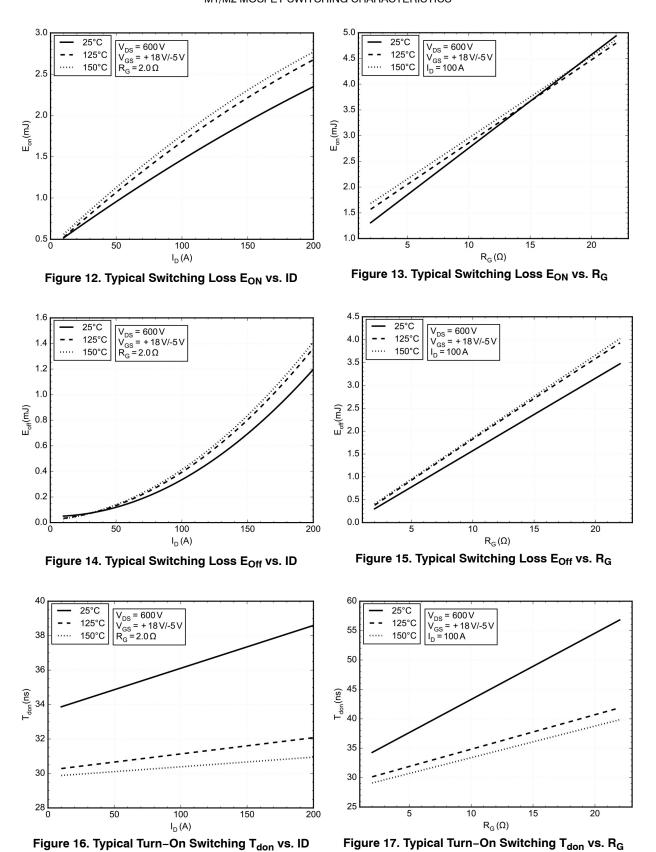



Figure 10. SiC Mosfet Junction- to-Case Transient Thermal Impedance

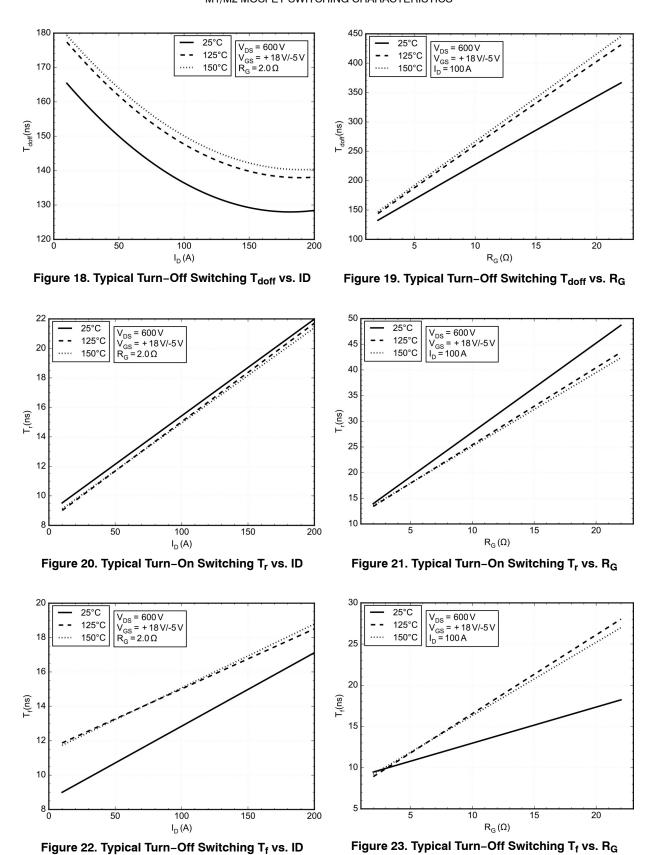
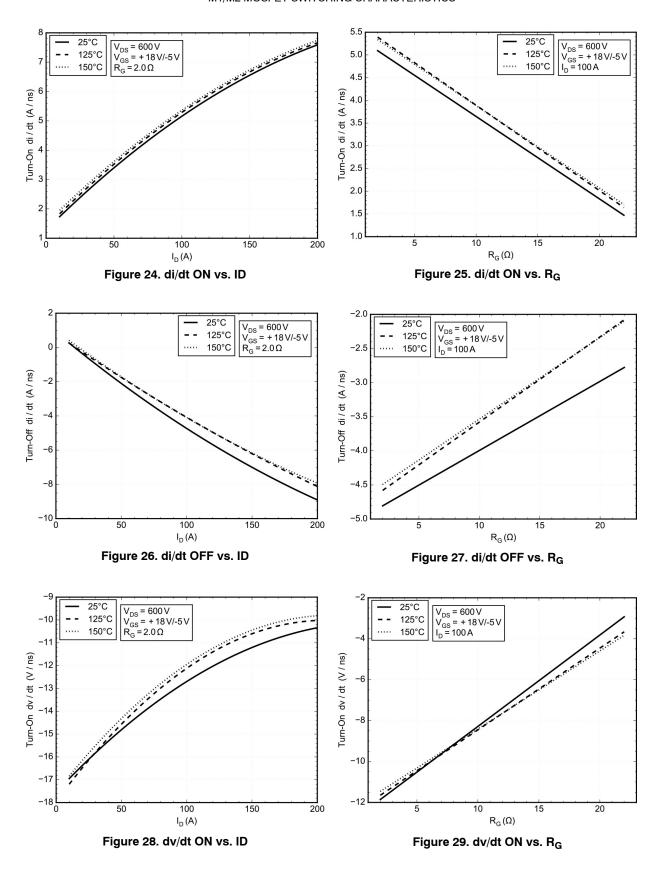

Element #	M1		M2		
	Rth (K/W)	Cth (Ws/K)	Rth (K/W)	Cth (Ws/K)	
1	0.00569	0.00195	0.01290	0.00461	
2	0.01079	0.00951	0.02387	0.02538	
3	0.03005	0.01813	0.04253	0.02953	
4	0.08398	0.08121	0.07199	0.08994	
5	0.09325	0.11117	0.07823	0.06854	

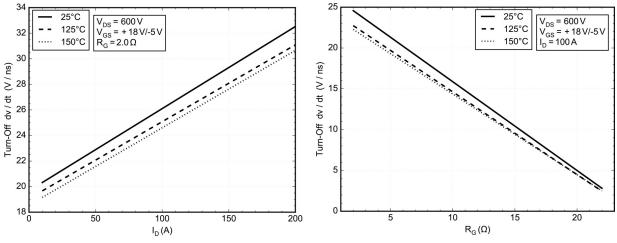
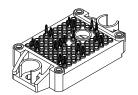
Figure 11. Table of Cauer Networks-M1, M2

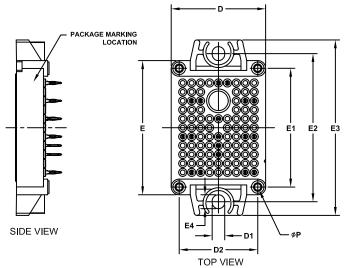

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

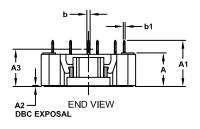
TYPICAL CHARACTERISTICS

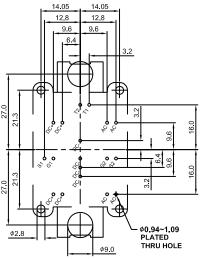
TYPICAL CHARACTERISTICS


Figure 31. dv/dt OFF vs. R_G

PIM18 33.8x42.5 (PRESS FIT) CASE 180BW ISSUE B


DATE 30 APR 2021



NOTES:

- 1. CONTROLLING DIMENSION: MILLIMETERS
- 2. PIN POSITION TOLERANCE IS ± 0.4mm

	MILLIMETERS		
DIM	MIN.	NOM.	MAX.
Α	11.65	12.00	12,35
A1	16.00	16.50	17.00
A2	0.00	0.35	0.60
A3	12.85	13.35	13.85
b	1.15	1.20	1.25
b1	0.59	0.64	0.69
D	33.50	33.80	34.10
D1	4.40	4.50	4.60
D2	27.95	28.10	28.25
Е	47.70	48.00	48.30
E1	42.35	42.50	42.65
E2	52.90	53.00	53.10
E3	62.30	62.80	63.30
E4	4.90	5.00	5.10
Р	2.20	2.30	2.40

GENERIC MARKING DIAGRAM*

RECOMMENDED MOUNTING PATTERN

XXXXX = Specific Device Code
AT = Assembly & Test Site Code

YYWW = Year and Work Week Code

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:	98AON19723H	Electronic versions are uncontrolled except when accessed directly from the Document Rep Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	PIM18 33.8x42.5 (PRESS FIT)		PAGE 1 OF 1		

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems. or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales