NOM02A6-AW49G

200DPI High-Speed Contact Image Sensor Module

Description

The NOM02A6-AW49G contact image sensor (CIS) module integrates a white LED light source with reflector, lens and image sensor in a compact housing. The module is designed for document scanning, mark reading, gaming and office automation equipment applications and is suitable for scanning documents up to 104 mm wide. An analog video output achieves a scanning rate of $167 \mu \mathrm{sec} / \mathrm{line}$. The NOM02A6-AW49G module employs proprietary CMOS image sensing technology from ON Semiconductor to achieve high-speed performance and high sensitivity.

Features

- Light Source, Lens and Sensor are Integrated Into a Sing' Mod
- 104 mm Scanning Width at 7.9 dots per mm Resolution
- $167 \mu \mathrm{sec} /$ Line Scanning Speed @ 5.0 MHz Pixel Rate
- Analog Video Output
- Supports A6 Paper Size at up to 74 Pages
- White LED Light Source with Reflector
- Wide Dynamic Range
- Compact $119.7 \mathrm{~mm} \times 19.0 \mathrm{~mm} \quad 0.1 \mathrm{~mm}$. Housing
- Low Power
- Light Weight 1.1 oz Pacl
- These Devices are Pb ree. en rree/BFR Free atid are R ${ }_{0}$ US Compliant

Applications

- Gaming, Tic t and CI k Scanner Machines
- Receipt Scan
- Mark Readers
- Office Automation Equipment

Figure 1. Typical Scanner Application

Table 1. ORDERING INFORMATION

Part Number	Package	Shipping Configuration
NOM02A6-AW49G	$($ Pb-free $)$	100 per packing carton

Figure: 'implified Bı ok Diagram

Table 2. PIN FUNCTION DESCRIPTION

Pin	Pin Name	
1	VOUT	Analr Vider ut
2	GND	- n unu
3	VDD	+5 - ver , ply
4		ft cor cted
5		
6	SP	Shitt register start, ciee
7	ID	Ground
8	C	Sampling clock pu're
9	GLED	Ground for the. - light $\bigcirc \cup 0$ ce
10	VLED	Power sur $0 . / 1$ ior thr 1 Co light source

Table 3. ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Power supply voltage	V_{DD}	7	V
	$\mathrm{~V}_{\text {LED }}$	6	V
Power supply current	$\mathrm{I}_{\text {LED }}$	350	mA
Input voltage range for SP, CP	$\mathrm{V}_{\text {in }}$	-0.5 to $\mathrm{V}_{\mathrm{DD}}+0.5$	V
Storage Temperature	$\mathrm{T}_{\text {STG }}$	-20 to 75	${ }^{\circ} \mathrm{C}$
Storage Humidity, Non-Condensing	$\mathrm{H}_{\text {STG }}$	10 to 90	$\%$
ESD Capability, Contact Discharge (Note 1)	ESD $_{\text {HBM }}$	± 2	kV

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above ${ }^{+1}$, Recommended Operating Conditions may affect device reliability.

1. This module assembly has been ESD tested to IEC61000-4-2 (HBM) Contact Di arge

Table 4. RECOMMENDED OPERATING RANGES (Unless otherwis cified, the ,ecifications apply $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$) (Note 2)

2. Refer to Figure 3 for more information on AC characteristics
3. $\mathrm{V}_{\text {LED }}$ directly affects illumination intensity, which directly affects $\mathrm{V}_{\text {OUT }}$.
4. $\mathrm{T}_{\text {int }}$ is the line scanning rate or integration time. $\mathrm{T}_{\text {int }}$ is determined by the interval between two start pulses. The clock is proportional to $\mathrm{T}_{\text {int }}$.
5. Main clock frequency (f) corresponds to the video sampling frequency.
6. Min, Typ, Max specifications reflect operation at the corresponding Min, Typ, Max clock frequency.
7. Prohibit crossing time is to insure that two start pulses are not supplied in the same scan line time. SP may only be active high during one falling edge of CP for any given scan.

Table 5. PHYSICAL SPECIFICATIONS

Parameter	Symbol	Typ	Unit
Scan width	PD_{w}	104	mm
Number of Photo Detector Arrays	$\mathrm{PDA}_{\mathrm{n}}$	13	arrays
Number of Photo Detectors	PD_{n}	832	elements

Table 6. PHYSICAL CHARACTERISTICS

Parameter	Symbol	Min	Typ	Max	Unit
Pixel pitch	$\mathrm{PD}_{\mathrm{sp}}$		125		$\mu \mathrm{m}$
Inter-array spacing	$\mathrm{PDA}_{\text {sp }}$	150	180	210	$\mu \mathrm{m}$
Inter-array vertical alignment	$\mathrm{PDA}_{\text {vxp }}$	-40	0	40	$\mu \mathrm{m}$
White LED chromaticity coordinates	$\begin{aligned} & \mathrm{X} \\ & Y \end{aligned}$	$\begin{array}{r} 02 \\ 16 \end{array}$	$\begin{array}{r} 0 \\ \quad 4 \\ \quad 3 \end{array}$	$\begin{gathered} 0.305 \\ 0.31 \end{gathered}$	

Table 7. ELECTRO-OPTICAL CHARACTERISTICS TEST C' ${ }^{\prime}$ 'DITION.

Parameter	Sy ol	Value	Unit
Power supply voltage	$V_{\text {DL }}$	5.0	V
	$\mathrm{V}_{\text {LED }}$	5.0	V
Clock frequency			MHz
Clock pulse high duty cycle	P		\%
Line scanning rate	$\mathrm{T}_{\text {int }}$	167	$\mu \mathrm{s}$
LED arrays pulsed time on (Note 8)	LED_Ton		ms
LED arrays pulsed time off (Note 8)	LED_Tch 1		ms
Operating Temperature		25	${ }^{\circ} \mathrm{C}$

8. Production tested with pl ig L

Table 8. ELECTRO-OPTICAL CHARACTERISTICS (Unless otherwise specified, these specifications were achieved with the test conditions defined in Table 7)

Parameter	Symbol	Min	Typ	Max	Unit
Bright analog output voltage (Note 9)	$\mathrm{V}_{\text {pavg }}$	0.9	1.0	1.1	V
Bright output non-uniformity (Note 10)	U_{p}	-30		30	$\%$
Bright output non-uniformity total (Note 11)	$\mathrm{U}_{\text {ptotal }}$			60	$\%$
Adjacent pixel non-uniformity (Note 12)	$\mathrm{U}_{\text {padj }}$			25	$\%$
Dark output voltage (Note 13)	V_{d}	150		350	mV
Dark non-uniformity (Note 14)	U_{d}			50	mV
Modulation transfer function at 50 line pairs per in (lp/in) (Note 15)	MTF_{50}	40			$\%$
Modulation transfer function at 100 line pairs per in (lp/in) (Notes 15, 16)	MTF_{100}	20			$\%$

9. $V_{\text {pavg }}=\sum V_{p(n) / 832, ~ w h e r e ~}$
V_{p} is the pixel amplitude value of $\mathrm{V}_{\text {OUT }}$ for a bright signal defined as a white do ev vith LFDs turned on, n is the sequential pixel number in one scan line.
$10 . U_{p}=\left[\left(V_{\text {pmax }}-V_{\text {pavg }}\right) / V_{\text {pavg }}\right] \times 100 \%$, or $\left.\left[V_{\text {pavg }}-V_{\text {pmin }}\right) / V_{\text {pavg }}\right] \times 100 \%$, whi ver is gre ere
$V_{\text {pmax }}$ is the maximum pixel voltage of any pixel at full bright
$V_{\text {pmin }}$ is the minimum pixel voltage of any pixel at full bright
10. $U_{\text {ptotal }}=\left[\left(V_{\text {pmax }}-V_{\text {pmin }}\right) / V_{\text {pavg }}\right] \times 100 \%$,
11. $U_{\text {padj }}=\operatorname{MAX}\left[\mid\left(V_{p(n)}-V_{p(n+1)} \mid / V_{p(n)}\right] \times 100 \%\right.$, where
$\mathrm{U}_{\text {padj }}$ is the nonuniformity in percent between adjacent pixels fo. 'rio' Jackaround
12. V_{d} is the pixel amplitude value of $\mathrm{V}_{\text {OUT }}$ for a dark signal defined a_{a}.ack $\mathrm{d}^{\text {. ment with LEDs turned } \mathrm{cf}}$
13. $\mathrm{U}_{\mathrm{d}}=\mathrm{V}_{\mathrm{dmax}}-\mathrm{V}_{\mathrm{d} \min }$, where
$V_{d m a x}$ is the maximum pixel voltage of any dark pixel r the LEDs tur, off
$V_{\text {dmin }}$ is the minimum pixel voltage of any dark pixel witt, LEDs tu of off
14. MTF $=\left[\left(\mathrm{V}_{\max }-\mathrm{V}_{\min }\right) /\left(\mathrm{V}_{\max }+\mathrm{V}_{\min }\right)\right] \times 100 \%$, wher
$\mathrm{V}_{\text {max }}$ is the maximum output voltage at the spf \quad nair- ach (lp/in)
$\mathrm{V}_{\text {min }}$ is the minimum output voltage at the spf ied Ip/iri
15. For information only.

Figure 3. Timing Diagram

DESCRIPTION OF OPERATION

Functional Description

The NOM02A6-AW49G module consists of 13 contact image sensors, each with 64 pixel elements, that are cascaded to provide 832 photo-detectors with their associated multiplex switches and double-buffered digital shift register that controls its sequential readout. A buffer amplifies the video pixels from the image sensors and output the analog video signal of the module as shown in Figure 2. In operation, the sensors produce an analog image pixel signal (or video signal) proportional to the exposure on the corresponding picture elements on the document. The VOUT signal outputs 832 pixels for each scan line. The first bit shifted out from VOUT during each scan represents the first pixel on the connector end of the module.

A pictorial of the NOM02A6-AW49G cross section view is shown in Figure 4. Mounted in the module is a one-to-one graded-index micro lens array that focuses the scanned document image onto the sensing plane. Illumination is accomplished by means of an integrated LED light source. An internal reflector helps illuminate the document more completely, eliminating shadows caused by wrinkles in the paper. All components are housed in a small plastic is ing, which has a glass cover. The top surface of the glass ac s the focal point for the object being scanned f pic is th. imaging array, micro lens assembly and L \mathcal{J} light s rce from dust.

Figure 4. Module Cross Section Vew

Connector Pin Out Description

Connections to the module are via a $2.4 \times 14.4 \mathrm{~mm} 10-$ pin connector (ECE part number EBW-PK 3 P010L2-3Z) located at one end of the module as sho yn in the package drawing on page 8 . The location of pin number 1 is indicated on the package drawing.

Scanner Applications

A typical use of the NOM02A6-AW49G module in scanner applications is shown in Figure 6. The document to be digitized is fed into the scanner where a sensor detects its presence. The scanner then operates the motor to move the paper under the contact image sensor module. The module illuminates the paper with internal LEDs and the image sensor pixel array detects the amount of reflected light and simultaneously measures a full line of pixels which are sampled and transferred to a FIFO for storage and conversion to a parallel output format. Once the pixel line is
processed, the motor advances the paper and the next scan line is captured.

Figure 5 ontlines the basic steps in the scanner control senuunce. En, st the circuits are initialized and the scanner wais fr, r . . document to be detected, usually by a paper sensing switch. Then a start pulse and clock pulse are suo riid to capture a line image. At the next clock pulse the first pixel value appears on the output. The pixel can be stored in a local line buffer memory. Subsequent clocks cause the remaining pixels to be shifted out and stored in the line buffer. Once the complete line has been shifted out it can be transferred to the host application and the system advances the paper and the line scan process repeats until the paper sensing switch indicates the document has passed completely through the scanner.

Device Marking and Barcode Description

Each module is marked with a tag that contains the part number, a number combining the manufacturing date code and serial number and a barcode. The barcode presents the date code and serial number in Interleave 2 of 5 barcode format as follows

YYMMSSSSSS
where
YY is the year,
MM is the month, and
SSSSSS is the serial number.

Glass Lens Care

Precautions should be taken to avoid scratching or touching the glass lens. The glass lens may be cleaned with alcohol.

Figure 6. Typical Scanner Assembly

PACKAGE DIMENSIONS

IMAGE SENSOR MODULE A6

CASE MODAF
ISSUE O

NUTE 3

DETAIL A 4X SCALE

WV VEV
2y SLILE

DETAIL B
4X SCALE

NOTES:

1. DIMENSIC NG AND TC ZANCING PER ASME Y I $5^{\wedge 1} 1994$.
2. CONTRO IG DIMENSI : MILLIMETERS.
3. LEADING ${ }_{L}$ OF THE PROACH ANGLE, N HE GLACS IS LOWER TH $/$ ' \quad Tת' THE HOUSING.
4. BORE DEPTH , HA 0.2 LEAD-IN CHAMFER
5. PIN HEADER, MODEL NUMBER EBW-PK23-P010L2 こ7 ^10 P'. N PITCH 1.25.
6. GLASS IS GLUED ON ALL 4 SIDES
7. GLASS THICKNESS IS 1.85 .
8. USE M2.3 SELF TAPPING SCREWS FOR Nン J HNG. TC Ru', E

SCREWS BETWEEN 1.80 KGF-CM AND 2. , KGF-CM1.
9. DIMENSION D1 DENOTES THE SCAN LENG H H.
10. DIMENSION K DENOTES THE POSITION OF TH - नIr ST PIXEL.

	MILLIMETERS	
DIM	MIN	MAX
A	13.00	14.00
A1	6.70	7.70
A2	13.20	14.20
B	17.70	18.30
B1	18.70	19.30
B2	5.50	6.50
C	15.20	15.80
D	119.20	120.20
D1	104.00	REF
E	2.10	2.30
H	34.80	35.80
J	5.70	6.30
K	6.00	8.00
L	6.00	REF

